
Turing Obfuscation

Yan Wang, Shuai Wang, Pei Wang, and Dinghao Wu

College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802, USA

{ybw5084,szw175,pxw172,dwu}@ist.psu.edu

Abstract. Obfuscation is an important technique to protect software
from adversary analysis. Control ow obfuscation e�ectively preve nts
attackers from understanding the program structure, hence impedin g
a broad set of reverse engineering e�orts. In this paper, we propose a
novel control ow obfuscation method which employs Turing mach ines
to simulate the computation of branch conditions. By weaving the orig-
inal program with Turing machine components, program control ow
graph and call graph can become much more complicated. In addition,
due to the runtime computation complexity of a Turing machine, pro-
gram execution ow would be highly obfuscated and become resilient
to advanced reverse engineering approaches via symbolic execution and
concolic testing.
We have implemented a prototype tool for Turing obfuscation. Com par-
ing with previous work, our control ow obfuscation technique de livers
three distinct advantages. 1). Complexity: the complicated structure of a
Turing machine makes it di�cult for attackers to understand the p rogram
control ow. 2). Universality: Turing machines can encode any c ompu-
tation and hence applicable to obfuscate any program component. 3).
Resiliency: Turing machine brings in complex execution model , which is
shown to withstand automated reverse engineering e�orts. Our ev alua-
tion obfuscates control ow predicates of two widely-used appl ications,
and the experimental results show that the proposed technique can ob-
fuscate programs in stealth with good performance and robustness.

Key words: Software security, control ow obfuscation, reverse engi-
neering, Turing machine

1 Introduction

Most software exploitation and hijacking attacks start by identifying p rogram
vulnerable points (e.g., bu�er overow). To launch attacks direct ly towards exe-
cutable �les, attackers usually need to �rst perform reverse engineering activities
and recover the control ow structures of the victim programs. Moreover, we also
notice that automated software analyzers can leverage advanced symbolic and
concolic testing techniques to explore execution paths and hence revealing hidden
vulnerabilities in binary code [6, 20, 12]. Typical concolic engines [11, 5]could
yield inputs which lead to new execution paths by solving branch conditions as

2 Wang et al.

constraints, and such technique has been proved as very e�ect in understanding
program structures [19].

A lot of software security research has focused on preventing reverse engi-
neering activities on program control structures and execution paths [29, 21, 18,
26, 27]. Control ow obfuscation is one of these cutting-edge techniques tocom-
bat both static and dynamic reverse engineering tools. Control ow obfuscation
largely changes the program control ow structures, and it has been shownas
e�ective to hide path conditions and complicate the execution ow of a pro-
gram. By rewriting or adding extra control ow components, the program pat h
conditions become di�cult or even impossible to analyze.

In this paper, we propose a novel control ow obfuscation method which
leverages Turing machine to compute path conditions. TheChurch-Turing the-
sis [9] states that the power of Turing machines and� -calculus is the same as
algorithms, or the informal notion of e�ectively calculable functions. Formally,
Turing computable, � -computable, and general recursive functions are shown to
be equivalent, and informally, the thesis states that they all capture the power of
algorithms or e�ectively calculable functions. This means any functional compo-
nent of software can be re-implemented as or transformed into a Turingmachine;
the replaced code component and its corresponding semantic equivalent Turing
machine is calledTuring Equivalent.

Our method is to simulate important branch condition statements in a pro-
gram with semantic equivalent Turing machines. A Turing machine behaves as
a state machine which brings in extra control ow transfers and basic blocks
to the overall program control ow graph. Moreover, a typical Turing mach ine
leverages transition tables to guide the computation, and such transition table-
based execution would introduce complicated execution model and make the
program execution much more challenging to analyze. We envision the proposed
technique would largely complicate the protected program, and also bring in
new challenges for reverse engineering analyzers. In addition, since Turing ma-
chine can represent the semantics of any program computation, our methodis
fundamentally capable of obfuscating any functional component.

To obfuscate a program through the proposed Turing obfuscator, we �rst
translate the original program source code into a compiler intermediaterepresen-
tation. Our Turing machine obfuscator then selects branch condition statements
(i.e., branch predicates) for transformation; the transformed statements will in-
voke its corresponding Turing machine component, which is semanticequivalent
to the original branch conditions. After �nishing the execution in th e Turing ma-
chine \black box", the execution ow returns back to the original program point,
with a return value to determine the branch selection. Consistent with existing
work [8], we evaluate our obfuscator regarding �ve aspects, namely function-
ality correctness, potency, resilience, cost, and stealth. Results show that the
proposed Turing obfuscator can e�ectively obfuscate commonly-used software
systems with acceptable cost, and impede reverse engineering activities through
an advanced symbolic execution analyzer (i.e., KLEE [5]).

Turing Obfuscation 3

The rest of this paper is organized as follows. Section 2 discusses related works
on obfuscation, especially control ow obfuscation. Section 3 presentsthe overall
design of Turing machine obfuscator. Obfuscator implementation is discussed in
Section 4. Section 5 presents the evaluation result of our proposed technique.
We further give discussions in Section 6, and conclude the paper in Section 7.

2 Related Work

In general, reverse engineering techniques can be categorized intostatic and
dynamic approaches. To impede static reverse engineering, researchers essen-
tially focus on hardening disassembling and decompiling process.To combat the
dynamic reverse engineering techniques such as concolic testing,sensitive con-
ditional transfer logic is proposed to be hidden from adversaries. Control ow
obfuscation has been proved e�ective in this scenario.

Sharif et al. [21] propose a technique to rewrite certain branch conditions and
encrypt code components that are guarded by such conditions. Branch condi-
tions that are dependent on the input are selected and branch conditionoutputs
are transformed with a hash function. Moreover, the code component which is
dependent on a transformed condition would be encrypted; the encryption key
is derived from the input which satis�es the branch condition. In general, their
technique focus on selectively translate branch conditions that aredependent on
the input, which could leave many branch conditions unprotected. Also, since the
branch condition statement itself is mostly untouched (only the boolean output
is hashed), the original branch condition code is still in the obfuscated program,
which could be leveraged to reveal the original semantics.

Popov et al. [18] propose to replace unconditional control transfer instruc-
tions such asjmp and call with \signals". Their work is used to impede binary
disassembling, the starting point of most reverse engineering tasks. Moreover,
dummy control transfers and junk instructions are also inserted after the replaced
control transfers. This method is e�ective in fooling disassemblers in analyzing
unconditional transfers but it could become mal-functional when the conditional
transfers need to be protected as well. Another related work proposes to protect
control ow branches leveraging a remote trusted third party environment [26].
In general, their technique mostly introduces notable network overhead and also
relies on trusted network accessibility which may not be feasiblein practice.

Ma et al. [16, 15] propose to use neural network to replace certain branch
condition statements; the propose technique is evaluated to conceal conditional
instructions and impede typical reverse engineering analysis such as concolic
testing. While the experimental results indicate the e�ectiveness to certain de-
gree, in general neural network-based approach may not be suitable for security
applications. To the best of our knowledge, neural network works like ablack
box; it lacks a rigorous theoretical foundation to show a correct resultcan always
to generated given an input. In other words, neural networks may yieldresults
which lead to an incorrect branch selection. We also notice some recent work
proposing to translate program components implemented in imperial language

4 Wang et al.

(C/C++) into languages of other computation paradigms. It is argued that by
mixing languages of di�erent execution model and paradigms, the complexity of
software systems grows and reverse engineering becomes more di�cult. Wang et
al. [23] presents a general framework to translate C statements into a logic state-
ments written in Prolog. Lan et al. [13] proposes to obfuscate program control
ow predicates with functional programming language statements.

3 Turing Obfuscation

3.1 Design Overview

In a program, a branch condition statement compares two operands and se-
lects a branch for control transfer based on the comparison result. As aforemen-
tioned, Turing machine has been proved to be able to simulate the semantics
of any functional component of a program. Hence, any program branch condi-
tion statement can be modeled by a Turing machine. Taking advantage of its
powerful computation ability as well as execution complexity, we propose to
employ Turing machine to obfuscate branch condition statements (the branch
condition statement is referred as \branch predicate" later in this paper since its
output is usually a boolean value) in a program. A Turing machine obfuscated
branch condition statement is shown in Fig. 1. Instead of directly computing a
boolean value through a comparison instruction, we feed a Turing machine with
the inputs (the value of operands) and let the Turing machine to simulate the
comparison semantics.

Fig. 1: Obfuscate a branch condition statement through a Turing m achine.

3.2 Turing Machine

As shown in Fig. 2, a typical Turing machine consists of four components:

{ An in�nite-long tape which contains a sequence of cells. Each cell holds a
symbol de�ned in the tape alphabet (the alphabet is introduced shortly). In

6 Wang et al.

represented as �ve continuous \�" on the tape. Note that a Turing machine could
be encoded with various of ways, and our prototype represents only one ofthem.
Turing machine with di�erent encoding strategies operates with totally distinct
execution patterns. This also makes Turing machine obfuscation di�cult to be
analyzed.

In general, our Turing machine tape alphabet includes two symbols, i.e.,
f� ; �g . The tape in Fig. 2 shows an initial state of a Turing machine. The head
of the Turing machine is placed on the leftmost cell. Di�erent operands are
separated by a blank symbol *". Operands encoded on the tape in Fig. 2 are
�ve and one. When Turing machine starts to run, the head reads the current
tape cell, combines with the current state register to locate a transition rule in
the transition table, and then moves to the next state, accordingly.

Turing Machine Execution The Turing machine keeps running step by step
directed by the transition table until it reaches a Halt state. Nevertheless, Turing
machine may also keep running forever since the process of solvingsome problems
cannot terminate. In our research, we implement a Turing machine tosimulate
branch predicates so it should always reach aHalt state. When reaching theHalt
state, the machine stops running and the computation result is shownon the
tape. Table 1 shows a transition table example, which guides a Turingmachine
for the addition (i.e., add) operation in our implementation.

Current State Current Symbol New State New Symbol Direction
S0 * S0 * Right
S0 . S1 . Right
S1 * S2 . Right
S1 . S1 . Right
S2 * S3 * Left
S2 . S2 . Right
S3 * S3 * Left
S3 . S4 * Left
S4 * Halt * -
S4 . S4 . Left

Table 1: Transition table of the add operation in a Turing machine.

Addition Turing Machine In this section, we elaborate on the design of
the addition Turing machine; this machine simulates the semanticsof the add
operation. Other Turing machines (e.g., subtraction and multiplicat ion Turing
machines) used in this research are designed in a similar way. Fig. 2presents a
sample initial stage of a tape, and the corresponding addition transition rules are
shown in Table 1 (this table will be explained shortly). After a sequence of read
and write operations based on the transition table, left operand (integervalue
5) and right operand (integer value 1) that are separated by a blank symbol *"

Turing Obfuscation 11

strategies in x6.

Operand Type In general, a branch predicate instruction can have either
pointer or numerical data types (i.g., integer or oat types). While th e proposed
technique is generally capable of translating branch predicate of any operand
type, considering processing operands of pointer (and oat) type would bring in
additional complexity, our current prototype is designed to only handle operands
of integer type. Actually our tentative study shows that most of the branch pred-
icate instructions would have operands of integer type, hence, our implementa-
tion choice is indeed capable of handling most of the real-world cases. Onthe
other hand, we emphasize extending our technique to handle other cases is only
a matter of engineering e�ort. We leave it as one future work to provide such
functionalities.

Def-use Chain Analysis Since our analysis is performed on IR expressions
of the three-address form, one branch predicate in the original program shall
be translated into a sequence of IR instructions. Hence, to performa faithful
obfuscation of one branch predicate, we need to �rst identify a \region" of IR
instructions that is translated from one branch predicate.

As shown in Fig.6, we perform def-use analysis to recover such \region"in-
formation. In particular, given a comparison IR instruction (which ind icates one
branch predicate and the end of the corresponding \region"), we calculatethe
use-def chains of its two operands, respectively. The identi�edinstructions which
provide the \de�nition" information of these two operands will be inc luded in
the \region". After the def-use analysis, we translate arithmetic instructions in
the \region" into function calls to the Turing obfuscator.

Obfuscation Level Obfuscation level is an indicator which weighs how much
of a program is transformed by the obfuscation pass. Consistent with previous
work [23], the obfuscation level is de�ned as the ratio between the obfuscated
instructions and the total candidates:

O = M=N

M is the number of instructions transformed by the obfuscation pass.N
is the number of all the transformable instructions (i.e., the branch predicate
instructions identi�ed in x 4.2).

5 Evaluation

Inspired by previous research [8, 16, 15], we evaluate our Turing machineob-
fuscator based on four metrics which arepotency, resilience, stealth and cost,
respectively. Potency weighs the complexity of the obfuscated programs, while
resilience measures how well an obfuscated program can withstand automated
deobfuscation techniques. Stealth is evaluated to show whether the obfuscated

12 Wang et al.

programs are distinguishable regarding its origins, and cost is naturally employed
to measure the execution overhead of the obfuscation products. In addition, we
also evaluate the functionality correctness of the obfuscated binaries.

Two widely-used open source programs are employed in our evaluation: com-
pression tool bzip2 (version 1.0.6) [1] and regular expression engineregexp
(version 1.3) [4]. As aforementioned, obfuscation level is an index whichstands
for the ratio of obfuscated instructions regarding all the candidates. In our ex-
periments, the ratio is set as 50% unless noted otherwise which meanshalf
candidates are randomly selected and obfuscated.

5.1 Functionality Correctness

Both programs evaluated in our research (bzip2 [1] and regexp [4]) are shipped
with test cases to verify the functionality of the compilation output s. In partic-
ular, the bzip2 test cases deliver 3 compression samples and 3 decompression
samples, while theregexp test cases contain 149 samples of various regular ex-
pression patterns. We leverage those shipped test cases to verify the functionality
correctness of our obfuscated programs. For all the evaluated obfuscation levels
(i.e., 30%, 50%, 80% and 100%), we report all the obfuscated programs can pass
all the test cases, hence preserving the original semantics after obfuscation.

5.2 Potency

Control ow graph (CFG) and call graph represent the general structure of a
program and they are the foundation for most static software analysis. With the
help of IDA Pro [2], a well-known commercial binary analysis tool, we recover
CFG and call graph information from both original and obfuscated binaries.
By traversing those graphs, we calculate the number of basic blocks,number
of call graph and control graph edges. We use these information to measure the
complexity of a (obfuscated) program, which is aligned with previous research [7].
Analysis results are shown in Table 2. Comparing the original and obfuscated
programs, it can be observed that program complexity is increased in terms of
each metric.

Table 2: Potency evaluation in terms of program structure-level i nformation.
Program # of CFG Edges # of Basic Blocks # of Function

bzip2 3942 2647 78
obfuscated bzip2 4195 2828 134

regexp 906 619 25
obfuscated regexp 1122 773 43

We further quantify the Turing machine obfuscated programs in termsof the
cyclomatic number and knot number (these two metrics are introduced in [17,
28]). Cyclomatic metric is de�ned as

Turing Obfuscation 13

Cyclomatic = E � N + 2

where E and N represent the number of edges and the number of nodes ina CFG,
respectively. Knot number shows the number of edge crossings in a CFG. These
two metrics intuitively measure how complicated a program is in terms of logic
diversion number. Results in Table 3 shows that knot and cyclomatic number
notably increase for both cases after Turing machine obfuscation. Overall, we
interpret Table 2 and Table 3 as promising results to show programs become
much more complicated after obfuscation.

Table 3: Potency evaluation in terms of knot and cyclomatic nu mbers.
Program # of Cyclomatic # of Knot

bzip2 1297 5596
obfuscated bzip2 1369 5720

regexp 289 478
obfuscated regexp 351 1068

Besides picking 50% as the obfuscation level in this evaluation, we alsocon-
duct experiments with obfuscation levels as 30%, 80% and 100%. Fig. 7 presents
the number of call graph edges with the increase of obfuscation levels. Observa-
tion shows that with a higher obfuscation level, the number of call graphedges
increases. Naturally, obfuscated programs can become more complicated with
the growing of obfuscation levels.

5.3 Resilience

In addition to complicate program structures, a good obfuscation technique
should be designed to impede automated deobfuscation tools as well. As afore-
mentioned, symbolic and concolic testing tools are leveraged in automated soft-
ware analysis to explore the program paths and reveal hidden vulnerabilities.
Hence in this evaluation, we adopt a cutting-edge symbolic engine (KLEE [5])
to test the resilience of the obfuscated programs. Ideally program obfuscation
brings in new challenges in reasoning path conditions, and hence would impede
symbolic tools from �nding new paths. In this evaluation, we use KLEE sample
code [3] as the test case (the sample code is shown in Fig. 8).

KLEE could detect three paths in the original test case as expected. Actually
based on di�erent value of x, this program may traverse branches in whichx
equals 0,x is less than 0 orx is greater than 0, respectively. In contrast, we report
KLEE could only reason one path condition for the obfuscated program. Due
to limited information released by KLEE, we could not reveal the underlying
reason that leads to the failure of the other two path conditions. Nevertheless,
since Turing machine obfuscator makes the branch predicates more complicated,
we envision that the internal constraint solver employed by KLEE is unable to
yield a proper symbolic input which could \drill" into the branche s protected

14 Wang et al.

 300

 400

 500

 600

 700

 800

 900

 0 0.2 0.4 0.6 0.8 1

ca
ll

gr
ap

h
nu

m
be

r

obfuscation level

regexp
bzip2

Fig. 7: Number of call graph edges in terms of di�erent obfuscati on levels.

1 int get sign(int x) f
2 if (x == 0)
3 return 0;
4
5 if (x < 0)
6 return � 1;
7 else
8 return 1;
9 g

10
11 int main() f
12 int a;
13 klee make symbolic(&a, sizeof (a), "a");
14 return get sign(a);
15 g

Fig. 8: KLEE sample code used in our evaluation. All the path c onditions are obfus-
cated.

by our tool. In sum, we interpret that Turing machine obfuscator can impede
automated program analyzers from exploring the program paths.

5.4 Stealth

To evaluate the stealth of the obfuscated programs, existing work [23] propose to
compare the instruction distributions of the original and obfuscated programs.
If instruction distribution of the obfuscated program is distinguish able from its
origin (e.g., call or jmp instruction proportions are abnormally high), it would

Turing Obfuscation 15

be an indicator that the program is manipulated. In this evaluation, we adopt
this metric to measure the stealth of our Turing obfuscator.

 0

 10

 20

 30

 40

 50

 60

add
and
call
cm

ov
cm

p
div
jm

p
jm

p.cond
lea
leave
m

ov
m

ul
neg
nop
not
or pop
push
rep
ret
set
shift
sse
sub
test
xchg
xor

pe
rc

en
ta

ge

instruction

bzip2
obfuscated bzip2

Fig. 9: bzip2 instruction distribution comparison.

Consistent with previous research [23], we put assembly instructions into 27
di�erent categories. Fig. 9 and Fig. 10 present the instruction distribution of the
original and obfuscated programs (bzip2 and regexp). Experimental results
indicate that the instruction distribution after obfuscation is ver y close to the
origin distribution. In sum, small instruction distribution variat ion is a promising
result to show the proposed technique would obfuscate programs in a stealthy
way.

5.5 Cost

Performance penalty is another critical factor to evaluate an obfuscation tech-
nique. In most obfuscation research work, execution cost is inevitably increased
because obfuscation would bring in extra instructions. Measuring the execution
time is a convincing way to evaluate the cost.

In our evaluation, both original and obfuscated programs are executed on a
server with 2 Intel(R) Xeon(R) E5-2690 2.90GHz processors and 128GB system
memory. bzip2 is used to compress three di�erent sample �les and regular ex-
pression engineregexp runs 149 samples provided in its shipped test cases. We
run each program three times and calculate the average execution cost.

Fig. 11 presents the execution overhead results. For both cases, theexecu-
tion time slowly grows with the increase of the obfuscation levels. Asexpected,

16 Wang et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

add
and
call
cm

ov
cm

p
div
jm

p
jm

p.cond
lea
leave
m

ov
m

ul
neg
nop
not
or pop
push
rep
ret
set
shift
sse
sub
test
xchg
xor

pe
rc

en
ta

ge

instruction

regexp
obfuscated regexp

Fig. 10: regexp instruction distribution comparison.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

tim
e

co
ns

um
pt

io
n(

se
co

nd
)

obfuscation level

regexp
bzip2

Fig. 11: Execution overhead in terms of di�erent obfuscation lev els.

Turing Obfuscation 17

program takes more time to execute when more instructions are obfuscated.
Nevertheless, we interpret the overall execution overhead is still con�ned to a
reasonable level. We also notice that there exists a di�erence between slopes
of the two curves. Some further study on the source code shows thatregexp
employs more recursive calls thanbzip2, thus may lead to more invocations of
the Turing machine component and contribute to the performance penalty.

6 Discussion

In this section we present the discussion of the proposed Turing machine obfus-
cation technique.

6.1 Complexity

In general, Turing machine model is a powerful but complex calculator that is
capable of solving any algorithm problem. Note that even a simple operation
(e.g., \add") may lead to the change of Turing machine states for hundredsof
times. Hence, it is hard|if possible at all|for adversaries with manual re verse
engineering e�orts to follow the calculation logic without understanding the tran-
sition table rules and state variables. In addition, automated binary analyzers
(e.g., KLEE) can also be impeded due to the runtime complexity of a Turing
machine. As shown in our resilience evaluation (x5.3), the constraint solver of
KLEE failed to yield proper inputs to cover two of three execution paths.

To further improve the complexity, a promising direction is to p erform \re-
cursive" obfuscation towards the input program. That is, we employ the Turing
obfuscator for the �rst round obfuscation, and further re-apply Turing obfusca-
tor to obfuscate the Turing machine inserted in the �rst round. Exi sting work
has pointed out that such \recursive" obfuscation approaches can usually im-
prove the program complexity, while may also bring in non-negligibleexecution
overhead [24]. We leave it as one future work to study practical strategies to
recursively apply our technique for obfuscation.

6.2 Application Scope

Previous obfuscation work [21] usually targets one or several speci�c kinds of
predicate expressions. Also, most of them performs source code leveltransfor-
mations for speci�c kind of program languages [23]. Turing obfuscator broadens
the application scope to any kind of conditional expression. In addition,it works
for programs written in any language as long as they could be transformed into
the LLVM IR. Considering a large portion of programming languages have been
supported by LLVM, we envision Turning machine obfuscator would serveto
harden software implemented with various kinds of programming languages.

18 Wang et al.

6.3 Branch Selection Techniques

As previously presented, our current implementation rewrites path condition in-
structions to invoke the Turing machine component. While it is mostly impossible
for attackers to reason the semantics of the Turing machine code, return value of
the obfuscator is indeed observable (since obfuscated branches are rewritten into
function calls to the Turing obfuscator). Certain amount of information l eakage
may become feasible at this point.

We notice that existing work ([16, 15]) proposes a di�erent approach at this
step; control ow is directly guided (via goto) to the selected branch from their
obfuscator. While this approach seems to hide the explicit return value, we argue
such technique is not fundamentally more secure since the hiddenreturn value
can be inferred by observing the execution ow. Another solution that may be
employed to protect the predicate computation result is to use matrix branch
logic [10]. Suppose we model a branch predicate with a Turing machine function,
the general idea is to further transform Turing machine into a matrix function,
and then randomize the matrix branching function. The involved matri x branch
logic and randomness shall provide additional security guarantees at thisstep.
Overall, we argue the current implementation is reasonable, and we leave it as
one future work to present quantitative analysis of the potential information
leakage and countermeasures at this step.

6.4 Execution Overhead

During the Turing machine computation, frequent state change would indicate
lots of read and write operations. Also, since tape is in�nite in Turing machine
model, it needs to allocate enough memory to accommodate complex computa-
tions. In general, the complexity of Turing machine may serve as a double-edge
sword; it impedes adversaries and potentially increases execution overhead as
well. As reported in the cost evaluation (Fig. 11), we observed non-negligible
performance penalty for both cases. One countermeasure here is to perform se-
lective obfuscation; users can annotate sensitive program components for obfus-
cation. Such strategy would improve the overall execution speed without losing
the major security guarantees.

7 Conclusion

In this paper, we propose a novel obfuscation technique using Turing machines.
We have implemented a research prototype, Turing machine obfuscator, on the
LLVM platform and evaluated on open source software with respect to func-
tionality correctness, potency, resilience, stealth, and cost. The results indicate
e�ectiveness and robustness of Turing machine obfuscation. We believe Turing
machine obfuscation could be a promising and practical obfuscation tool toim-
pede adversary analysis.

Turing Obfuscation 19

8 Acknowledgment

We thank the anonymous reviewers for their valuable feedback. This research
was supported in part by the National Science Foundation (NSF) under grant
CNS-1652790, and the O�ce of Naval Research (ONR) under grants N00014-
13-1-0175, N00014-16-1-2265, and N00014-16-1-2912.

References

1. bzip2. http://www.bzip.org , 2017.
2. ida. https://www.hex-rays.com/products/ida/ , 2017.
3. Klee sample. http://klee.github.io/tutorials/testing-function/ , 2017.
4. slre. https://github.com/cesanta/slre , 2017.
5. Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE: Unass isted and

automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and Im-
plementation (OSDI'08) , pages 209{224, 2008.

6. Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill , and Dawson R.
Engler. Exe: Automatically generating inputs of death. In Proceedings of the 13th
ACM Conference on Computer and Communications Security , CCS '06, 2006.

7. Haibo Chen, Liwei Yuan, Xi Wu, Binyu Zang, Bo Huang, and Pen -chung Yew.
Control ow obfuscation with information ow tracking. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarch itecture (Micro
'09) , pages 391{400, 2009.

8. Christian Collberg, Clark Thomborson, and Douglas Low. Manufac turing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'98) , pages 184{196, 1998.

9. B. Jack Copeland. The church-turing thesis. Stanford encyclo pedia of philosophy,
2002.

10. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and func tional encryption for
all circuits. In Proceedings of the 2013 IEEE 54th Annual Symposium on Founda-
tions of Computer Science, FOCS '13, 2013.

11. Patrice Godefroid, Michael Y. Levin, and David Molnar. Automa ted whitebox
fuzz testing. In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS'08), 2008.

12. James C. King. Symbolic execution and program testing. Commun. ACM ,
19(7):385{394, July 1976.

13. Pengwei Lan, Pei Wang, Pei Wang, and Dinghao Wu. Lambda obfu scation. In
Proceedings of the 13th EAI International Conference on Security and Privacy in
Communication Networks (SECURECOMM'17) , 2017.

14. Chris Lattner and Vikram Adve. LLVM: A compilation framework fo r lifelong
program analysis & transformation. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO'04) , pages 75{86, March 2004.

15. Haoyu Ma, Ruiqi Li, Xiaoxu Yu, Chunfu Jia, and Debin Gao. In tegrated software
�ngerprinting via neural-network-based control ow obfuscation . IEEE Transac-
tions on Information Forensics and Security , 11(10):2322{2337, 2016.

20 Wang et al.

16. Haoyu Ma, Xinjie Ma, Weijie Liu, Zhipeng Huang, Debin Gao, an d Chunfu Jia.
Control ow obfuscation using neural network to �ght concolic te sting. In Proceed-
ings of 10th International Conference on Security and Priva cy in Communication
Networks (SECURECOMM'14) , pages 287{304, 2014.

17. Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308{320, Dec 1976.

18. Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. Binary o bfuscation
using signals. In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium (USENIX Security '07) , 2007.

19. Koushik Sen and Gul Agha. Cute and jcute: Concolic unit tes ting and explicit
path model-checking tools. In Proceedings of the 18th International Conference on
Computer Aided Veri�cation , CAV'06, 2006.

20. Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic un it testing engine
for c. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Fou ndations of
Software Engineering (FSE '13) , pages 263{272, 2005.

21. Monirul I. Sharif, Andrea Lanzi, Jonathon T. Gi�n, and Wenke L ee. Impeding
malware analysis using conditional code obfuscation. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS'08), 2008.

22. SingleTape. Turing machine. http://turingmaschine.klickagent.ch/ , 2017.
23. Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao W u. Translingual

obfuscation. In Proceedings of 2016 IEEE European Symposium on Security and
Privacy (EuroS&P'16) , pages 128{144, 2016.

24. Shuai Wang, Pei Wang, and Dinghao Wu. Composite software diversi�cation. In
Proceedings of the 33rd IEEE International Conference on Software Maintenance
and Evolution (ICSME '17) , 2017.

25. Yan Wang. Obfuscation with Turing machine. Master's thesis , The Pennsylvania
State University, 2017.

26. Zhi Wang, Chunfu Jia, Min Liu, and Xiaoxu Yu. Branch obfuscat ion using code
mobility and signal. In Proceedings of 2012 IEEE 36th Annual Computer Software
and Applications Conference Workshops (COMPSACW'12) , pages 553{558, 2012.

27. Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Linear obfus cation to combat
symbolic execution. In Proceedings of the 16th European Conference on Research
in Computer Security , pages 210{226, 2011.

28. Martin R. Woodward, Michael A. Hennell, and David Hedley. A m easure of control
ow complexity in program text. IEEE Transactions on Software Engineering ,
5(1):45{50, January 1979.

29. Dongpeng Xu, Jiang Ming, and Dinghao Wu. Generalized dynami c opaque pred-
icates: A new control ow obfuscation method. In Proceedings of the 19th Infor-
mation Security Conference (ISC'16) , pages 323{342, 2016.

